存档

‘算法’ 分类的存档

信用卡校验位算法THE LUHN MOD-10

2013年3月26日 没有评论

1. 对卡号上的每位数字乘以权重。其规则是,如果卡号数字个数是偶数,则第一位乘以2,否则就乘以1,然后以后分别是,1,2,1,2,1,2;
2. 如果每位数字乘以权重后超过9 ,则需要减去 9;
3. 将所有的处理过的加权数字求和,用 数字 10 求模运算;
4. 余数应该是0,否则可能是输入错误。也可能是一个假号。

分类: 算法 标签: , ,

Bloom Filter概念和原理

2012年10月24日 没有评论

Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。

 

1 Overview

Bloom filter最早由 Burton Howard Bloom提出,是一种用于判断成员是否存在于某个集合中的数据结构。 Bloom filter的判断基于概率论:

  • 如果某个成员存在于集合中,那么Bloom filter不会返回假(即不存在),也就是说false negative是不可能的。
  • 如果某个成员实际上不存在于集合中,Bloom filter可能返回真(即存在),这种情况被称为false positive。

Bloom filter通常被实现为一个包含 m 位的位数组(bit array),所有位的初始值都为0。 Bloom filter支持以下两种类型的操作:

  • add。将成员添加到Bloom filter中。以该成员为参数调用 k 个索引函数(index functions),得到 k 个位数组的索引值,取值范围是 [0, m), 然后将位数组的对应位设置为1。
  • query。判断某个成员是否已经添加到Bloom filter中。以该成员为参数调用 k 个索引函数,得到 k 个位数组的索引值,然后根据这些索引值检查位数组:当位数组中所有的对应位均为1时,那么认为该成员已经存在。

如果query的结果为真(即positive),那么实际上存在以下两种可能性:

  • 该成员已经被add到集合中,即该成员的确存在。
  • 该成员未被add到集合中,但是query过程中检查的所有位均被设置为1(由于添加的其它成员导致)。这种情况被称为false positive。

传统的Bloom filter 不支持从集合中删除成员。对于每个添加到Bloom filter中的成员,实际上将其位数组中的 k位设置为1。尽管将这些位重置为0可以保证从Bloom filter中删除该成员,但是这样做的副作用是可能会影响某些其它成员,因为其它成员也可能被映射到这些被重置为0的位中的一位或者多位, 从而最终导致false negatives。对于Bloom filter而言,false negatives是不被允许的。 Counting Bloom filter由于采用了计数,因此支持remove操作。

Bloom filter 使用的 k 个index functions,有时也被称为hash functions,它们通常被假定为彼此独立,返回值在可能的取值范围内均匀分布(这是以下一系列数学证明的基础)。

 

2 The Math

Bloom filter的基本概念并不复杂,接下来分析一下query操作对某个未被添加的成员返回positive(即false positive)的概率:

假设p是位数组中某一位为1的概率, 那么false positive的概率是 pk 。如果n是已经添加到Bloom filter中的成员个数,那么 p = 1 – (1 – 1/m)nk,经过一系列推导得到 p ≈ ( 1 – e-kn/m ) , 当 k = m / n * ln2 时(ln 即 loge),p为最小值。 例如当k = 8, m/n = 10时, false positive的理论值为0.00846。以下是段计算false positive的实例代码:

Java代码
  1. public static double calculateFalsePositiveProbability(int k, int m, int n) {
  2.     return Math.pow((1 - Math.exp(-k * (double) n  / (double) m)), k);
  3. }

 

对于某些应用而言,false positive的概率已经是一个足够好的判断Bloom filter准确性的指标,Peter C.Dillinger 和 Panagiotis Manolios 在其Bloom Filters in Probablistic Verfification的论文中指出,对于query过程中的不确定性, state omission 是一个更合适的指标。建议感兴趣的读者阅读该论文,顺便也可以复习一下相关的数学知识。

分类: 算法 标签: